Samenvatting
Die folgenden Anmerkungen dienen der Präzisierung der beschriebenen mathematischen und physikalischen Phänomene. [1] In der abstrakten Sprache der Mathematik kann eine genauere Definition einer Gruppe folgendermaßen getroffen werden. Eine Gruppe ist eine endliche oder unendliche Menge von Elementen A, B, C, ... , zwischen denen eine Verknüpfung, Multiplikation genannt, definiert ist. In der Gleichung C = AB soll aus je zwei der drei Elemente die Existenz und Eindeutigkeit der dritten folgen, und es soll das assoziative Gesetz A(BC) = (AB)C gelten. Die Elemente A, B, C, ... der Gruppe können «Operatoren» sein, die eine Transformation bewirken, wie z. B. A = Verschiebung, B = Dre hung, C = Spiegelung. Das Produkt AB soll dann bedeuten, daß zuerst die Drehung B und dann die Verschiebung A ausgeführt werden. Das Resultat muß das gleiche sein wie das der Spiegelung C. [2] Siehe G. Mazzola, D. Krömker, G. R. Hofmann, Rasterbild-Bildraster, Anwendung der Graphischen Datenverarbeitung zur geometrischen Ana lyse eines Meisterwerks der Renaissance: Raffaels , Berlin (Springer-Verlag) 1987.
Specificaties
Lezersrecensies
Inhoudsopgave
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan